
Event Data Models

An Introduction and Survey

Jim Kowalkowski
Marc Paterno

Introduction

What is an Event Data Model?

Why is one useful?

What are common features?

Event Models 3

Classes and Instances

• Instance

• a unit that combines a specific state (data) and the
functions used to manipulate it (methods)

• Class

• a type that defines related instances

• a description of what the instances have in common
(types of data, method definitions)

• the body of code that manipulates the data in the
instances

• A program can have multiple instances of the
same class, each with different values

Event Models 4

Parameterized Classes

• Class template

• A description for how to write a class

• Describes a family of classes that share
common characteristics

• Instantiating a class template causes the
compiler to write a class; one can then
make instances of the class

• std::vector — class template

• std::vector<float> — instantiated class

• std::vector<float> vf — object, or instance

Event Models 5

What is an Event Data Model?

• An Event Data Model (EDM) provides a
mechanism for managing data related
to an physics event within a program

• An EDM is not:

• a persistency mechanism

• an I/O mechanism

• a file format

… although it is related to all of these
things

Event Models 6

Why is an EDM Useful?

• It allows for independence of
reconstruction modules

• This assumes a modular framework

• Modules communicate only via the EDM

• true whether modules are C++ or Fortran

• Modules can be developed and maintained
independently – critical for maintainability
of a large body of code

Event Models 7

Why is an EDM Useful?

• Can isolate users from need to interact
with persistency mechanism

• implementation of streaming

• Can isolates users from I/O mechanism

• details of reading files

• Can isolates users from changes in file
formats

Event Models 8

General Features

• Some features are shared by all EDMs
• Event class, collection of data for one event

• Many classes representing various “pieces”
of an event, and collections thereof:
• tracking hits; calorimeter energies

• tracks, candidate particles (electron, tau, jet, ...)

• Navigation classes
• efficient location of specific “pieces”

• associations between “pieces” of the Event

• Metadata classes

Event Models 9

Common Needs

• More than one algorithm can produce
each kind of output

• need to be able to hold, and uniquely
identify, the output of a specific algorithm

• e.g. cone algorithm jets and KT algorithm jets

• A single algorithm can be configured with
different parameters; need to distinguish

• e.g. R=0.7 cone jets and R=0.4 cone jets

Event Models 10

Common Needs

• Many different types of reconstructed
“pieces” need to be stored in the event

• All these types make up “the EDM”

• Continuous need to add new types of
“pieces” to the event
• it is impossible to predict them all at the

outset of the experiment

• the EDM grows as the need arises

• Sometime we call the core classes “the
EDM”

Event Models 11

Identifying BTeV Requirements

• “You can get at the data, whatever
language you speak”
• in the trigger? offline?

• “Data structures should have fixed
maximum sizes”
• goal is speed – time not wasted allocating

and freeing memory

• can be achieved in different manners,
allowing one to retain a flexible EDM

• Full data access for Fortran, no copying

Event Models 12

Mission Impossible?

1. Trigger code must access data without
requiring any copying of data

2. It must be possible to write triggers in
Fortran 77

• Why not both?

• Fortran common blocks are disconnected
from an object-based EDM

• Tremendous difficulty mapping even
simple C++ structures into Fortran

Event Models 13

Before Designing an EDM

• Need to start with requirements

• required features

• attractive features

• priorities

• Possible to modify an existing EDM, or
design from scratch

• An overview of some existing data
models may help illustrate the range of
possibilities ...

The Survey

A tour through the major
features of the CDF, DØ, Gaudi
and MiniBooNE event models

Event Models 15

• A more detailed document on this topic shall
be available, at:

• This survey is an extract of the tables from the
current version of that document

• Please contact the authors with any
corrections

• paterno@fnal.gov & jbk@fnal.gov

http://www-cdserver.fnal.gov/
public/cpd/aps/EDMSurvey.htm

Event Models 16

Overview

• The CDF and DØ EDMs are in active
use by those experiments, respectively

• The Gaudi EDM is under development
by the LHCb experiment

• The MiniBooNE EDM is in active use,
but still undergoing development.
MiniBooNE uses both C++ and Fortran

• Features viewed from C++: MB

• Features viewed from Fortran: MBF

Event Models 17

Access to the Event

How does a user gain access to an Event?

• CDF passed into functions; also global

• DØ passed into functions

• Gaudi search in global registry

• MB passed into functions

• MBF globally available

• Global access will have some influence
on ability to handle multiple events

Event Models 18

Event Multiplicity

During development, testing, and
simulation, it is sometimes useful to
handle more than one Event at a time

Can we have more than one Event?
• CDF Yes, but use of global causes trouble

• DØ Yes

• Gaudi Not yet; plans are to access “named”
instances

• MB Yes

• MBF No; too hard to do in Fortran

Event Models 19

Definition of Event Data Object

• The Event is a container of objects
• raw data; MC particles; GEANT hits

• trigger results, reconstructed objects

• Each experiment has its own terminology for
the constituents of an Event
• CDF storable objects

• DØ chunks

• Gaudi data objects

• MB chunks

• Often, the things the Events collects are
themselves collections (of hits, tracks, jets ...)

Event Models 20

Event Interface

What is the “look and feel” of an Event?

• CDF collection with “generic” iterator

• DØ “database” with type safe queries

• Gaudi filesystem-like hierarchy of named
nodes

• MB associative array of type safe nodes

• MBF subroutine calls to load common
blocks

Event Models 21

Adding to the Event

How is a new object added to an Event?

• CDF ownership passed (design), no copy

• DØ ownership passed (design), no copy

• Gaudi ownership passed (convention), no
copy

• MB ownership passed (design), no copy

• MBF copy from common block to C++
object, then as above

• Relying on convention is error prone!

Event Models 22

Mutability of Event Data

Can objects in the Event be modified?

• Desire for reproducibility argues this
should be very tightly controlled

• CDF no, except that collections can grow

• DØ no

• Gaudi yes

• MB under development

• MBF under development

Event Models 23

Inheritance

Is inheritance from a base class needed?

• CDF from TObject via StorableObject

• must implement a streamer; requires CDF
macro, to write some of the interface required
by ROOT

• DØ from d0_Object via AbsChunk

• requires DØ macro, to write some of the
interface required by DOOM; requires
possession of various IDs

Event Models 24

Inheritance (cont’d)

• Gaudi from DataObject

• must be able to return a globally unique ID for
the class.

• MB none

• Should be a POD; current usage of ROOT
violates this

• MBF none

• Any properly padded common block, no strings
allowed

Event Models 25

EDO Multiplicity

Is it possible to access more than one
instance of an EDO class at one time?

• Everyone needs this

• CDF tracks: needs more than one set,
several competing algorithms

• DØ raw data: need more than one in
simulation

• This ability generates a requirement for
labelling EDOs.

Event Models 26

EDO Multiplicity (continued)

Is it possible to access more than one
instance of an EDO class at one time?

• CDF yes

• DØ yes

• Gaudi yes

• MB yes

• MBF no

Event Models 27

Labelling

How are objects in an Event labelled?

• CDF

• Unique object ID, configuration parameter set
ID, descriptive string, class version, and class
name

• DØ

• Unique object ID, configuration parameter set
ID, parent object IDs, geometry & calibration
IDs, and string labels

Event Models 28

Labelling (cont’d)

• Gaudi

• Class ID, descriptive string with hierarchical
path

• MB

• Descriptive string and class name

• MBF

• Descriptive string

Event Models 29

Query Interface

How does a user specify which EDO he
wants?

• CDF

• Custom iterators with optional selectors
specifying a combination of labels

• DØ

• User specified criteria based on object data or
specific labelling information; multiple objects
returned

Event Models 30

Query Interface (cont’d)

• Gaudi

• string path information

• MB

• Class name/descriptive string; single object
returned

• MBF

• Descriptive string; single object put into
common block

Event Models 31

Query Results

In what form is the result returned?

• CDF

• Custom iterator; read-only access to the object
they refer to and traversal to next object

• DØ

• Collection of handles that allow read-only
access to the objects

Event Models 32

Query Results (cont’d)

• Gaudi

• Bare pointer to the base class object or to the
object itself

• MB

• Read-only pointer to the object

• MBF

• Populated common block, a copy of the event
data

Event Models 33

Multiple Matches

What happens if more than one EDO
matches the query?

• CDF iterator moves through the matches

• DØ collection of matches is returned

• Gaudi not applicable

• MB no multiple matches implemented

• MBF no multiple matches allowed

Event Models 34

Support for Associations

What support is given for making
associations between EDOs?

• Bare pointers are unsuitable

• When a pointed-to object is deleted

• When only parts of an Event are written

• When reading an Event

• “Smart pointers” of various sorts are the
usual solution

• class templates with special behavior

Event Models 35

Parameterized Classes

• Class template

• A description for how to write a class

• Describes a family of classes that share
common characteristics

• Instantiating a class template causes the
compiler to write a class; one can then
make instances of the class

• std::vector — class template

• std::vector<float> — instantiated class

• std::vector<float> vf — object, or instance

Event Models 36

Support for Associations

• CDF

• Special link classes that are converted from
pointer to id and back automatically; links exist
for objects with collection associations

• DØ

• Special link classes that are converted from
pointer to id and back semi-automatically; link
classes exist for top-level EDOs and for items
within collections

Event Models 37

Support for Associations (cont’d)

• Gaudi

• Special link classes that re converted from
pointer to id automatically; links exists for
DataObjects or vectors

• MB

• currently no infrastructure support

Event Models 38

Restrictions on Associations

• In all cases, C++ object models disallow
(by convention) use of bare pointers

• Associations are one-way, from “newer”
objects to “older” objects

• enforced for CDF, DØ; convention for
Gaudi

• Complex associations must be
implemented in distinct EDOs

Event Models 39

Persistency Impositions

What requirements are placed on EDOs
by the persistency mechanism?

• CDF macros, streamers, TObject

• DØ macros, d0_Object

• Gaudi all data public, or available with
get/set methods

• MB macros

• MBF C struct, padded to map to common
block

Event Models 40

I/O Format

What file format is used?
• CDF ROOT

• DØ DSPACK is standard, others are
possible

• Gaudi Objectivity and ROOT

• MB ROOT

• MBF ROOT

• Multiple I/O formats are available for
those designs that have isolated the
persistency mechanism from the EDM

Event Models 41

Schema Evolution

• Mentioned several times as important
• New classes are added – easy!

• Existing classes are changed – harder

• Widely different degrees of automation
• CDF if statements in streamers

• DØ automated, using D0OM data
dictionary

• Gaudi if statements in converters

• MB automated, using ROOT data
dictionary

Event Models 42

Translation Mechanism

What is done to write out/read in an
object?

• CDF
• Hand written code to write object's data into
the ROOT buffer; transient representation
typically differs significantly from the persistent
form

• DØ
• Automated by data dictionary; copies data to
the Fortran bank structure, then to output.
Rarely used activate/deactivate can do simple
transient mapping.

Event Models 43

Translation Mechanism (cont’d)

• Gaudi

• Converter external to the class reads state out
into the persistency package buffers; copy the
data objects into objectivity objects, then write
the those objects

• MB

• Automated by data dictionary, copies data to
ROOT buffers.

Where to go from here?

Event Models 45

Questions for BTeV

• Are your requirements agreed upon?

• If not how will consensus be reached

• If so, are they clearly expressed?

• What process will be used to move from
requirements to a solution?

• Concrete milestones

• Time estimates

• Continuous review of both to keep project
on track

